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Field-programmable gate arrays (FPGAs) offer a computational paradigm that can in principle
provide a low-cost, high-performance alternative to general-purpose high-performance computing
and accelerator architectures such as graphics processing units (GPUs). These devices comprise
user-configurable connections amongst a predefined set of logical units and can be optimized at
the hardware level for a specific calculation; the space of possible optimizations in computational
representations and data localization in particular is large, and by exploiting them, calculations can
be performed orders of magnitude more efficiently than on regular CPU hardware. While FPGAs
have existed for many years and have seen much use in custom electronics such as trigger imple-
mentations in detector experiments and inference [1], it is only recently that the available hardware
has evolved to the point where they provide a viable resource for general scientific computing.
Rapid developments in hardware driven by large-scale uptakes in industry (e.g. Microsoft’s cloud
platform and Bing search infrastructure), and the availability of higher-level programming models
that abstract away hardware details, have precipitated this transition and offer a positive outlook
for future rapid evolution. Recently, FPGAs are appearing in HPC systems such as the cygnus

computer at the University of Tsukuba in Japan. For the purposes of this letter, FPGAs can be
considered as accelerator cards added to a CPU-based system.

Lattice Quantum Chromodynamics (LQCD) [2, 3, 4] is the only known method to address low
energy hadronic and nuclear physics calculations in the Standard Model (SM). At intermediate
stages, this numerical approach proceeds by defining a 4-dimensional spacetime grid (lattice) on
which the quark and gluon degrees of freedom are defined. Physical results are defined as integrals
over these degrees of freedom, Ndof = O(109−1012) variables in state-of-the art computations, in
the limit that this discretization is removed. LQCD calculations therefore amount to the evalua-
tion of such integrals using importance sampling Monte-Carlo methods. LQCD presents a extreme
computational challenge and a large sustained algorithmic and software development effort over the
last decades has brought the field to a point where many relatively simple properties of hadrons
such as the proton and heavy mesons can be computed with high fidelity and rigorously controlled
uncertainties. These calculations underlie the critical role that LQCD plays in high-energy physics
(HEP), amongst other things enabling determinations of many of the CKM matrix elements and
providing the most precise value of the strong coupling [5, 6, 7, 8, 9, 10, 11]. However, there
are many new and emerging opportunities for LQCD to contribute to the HEP mission, many of
which require more challenging calculations than are presently possible, either due to precision
requirements or to the complexity of the process under consideration. For example, a high pre-
cision determination of the proton radius would provide a SM benchmark to confront discrepant
measurements from electronic and muonic probes of hydrogen. Similarly, in intensity frontier ex-
periments such as those seeking to directly detect dark matter, nuclear targets are essential and
SM predictions require calculations of nuclear matrix elements of operators arising from BSM–SM
couplings.
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The dominant computational task in LQCD is the evaluation of inverses and determinants of
the “Dirac operator”, a sparse matrix of size Ndof × Ndof that appears in the requisite integrals.
Fundamentally, these tasks amount to solving very large linear systems. First attempts to address
LQCD computations by implementation of these linear systems on FPGAs date back to 2006 [12]
with more recent work in Refs. [13, 14, 15, 16]. However the LQCD community has a long tradition
of developing and utilizing novel and custom hardware for its computational needs, with notable
machines based on purpose-built ASICs such as QCDOC [17]. So far, FPGA implementations
of one of the simplest LQFT algorithms have been developed, and these are not yet sufficient to
provide a viable alternative to mainstream high-performance computing. The most sophisticated
work is that in Ref. [16] which implements the Conjugate Gradient (CG) linear solver algorithm,
offloading the most computationally expensive kernel for execution on the FPGA and makes use
of hardware kernels at multiple different precisions and cyclic buffers. The performance achieved
in this implementation on a single Xilinx Alveo U280 accelerator card reached 600 GFlops, similar
to latest generation GPUs using the QUDA lattice field theory library[18]. This is impressive and
substantial progress, but the CG algorithm is far from the state-of-the-art and significant advances
are necessary in order for FPGAs to be considered feasible for large-scale LQCD calculations.
Over the timeframe of the ongoing planning process, we anticipate that these developments will
be undertaken and an FPGA-based approach to LQCD may be a viable alternative to the current
paradigm. Some particular directions in which advances are necessary are:

• State-of-the-art inverter algorithms

The dominant computational task in LQFT is the inversion of very large, but very sparse
matrices. There are many numerical methods that can be used for this task; the conjugate-
gradient (CG) algorithm is one of the simplest of these methods and is the one for which
FPGA implementations have already been developed. However, more efficient algorithms
exist and are used for state-of-the-art LQFT calculations on traditional high-performance
computing platforms and GPU systems. In particular, algebraic multigrid (AMG) algorithms,
which exploit algebraic structure within the matrix, are proven to be optimal at this task but
are considerably more complex to implement and depend in greater detail on the particular
matrix being inverted. As such, to be competitive with existing approaches, an FPGA based
computer must have an efficient implementation of AMG.

• Parallel implementation of inverter algorithms

Due to the four-dimensional nature of spacetime, the size of the matrices that must be inverted
in state-of-the-art LQCD calculations is large, as reported above. This is far beyond the scale
of problem that can fit in a single FPGA and thus must rely on parallel algorithms ultimately
implemented across hundreds of FPGAs. A natural approach to parallelization that is used
in more traditional HPC systems is to split the spacetime geometry into regions and assign
each to a different computational unit. Because of the structure of the underlying physical
interactions, parallelization is non-trivial as different FPGAs must exchange information.
This requires efficient kernels for data exchanges and optimizing their interplay with the
computational kernels. However, FPGA vendors have invested deeply in developing low-
latency high-performance network implementations (FPGAs are extensively used in network
switches) and there is reason to believe this will be transferable to LQCD.

• Force calculations and other LQCD algorithms

Beyond the sparse-matrix inversion task, LQCD calculations involve a range of other opera-
tions that must be performed including the calculation of the gauge force terms used in the
Hybrid Monte-Carlo algorithm that is used to generate the gluon field configurations used
in LQCD. While not the dominant cost in current CPU implementations of LQCD, with
accelerated inverters, the computational cost of such algorithms becomes relevant and will
need to be ported to make use of FPGA hardware.
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Topical Groups: � (CompF2) Theoretical Calculations and Simulation
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