The tensor renormalization group is poised for success
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Lattice regularization of quantum chromodynamics has been remarkably successful, both
conceptually and practically, taking advantage of large-scale computing resources to explore
the parameter space nonperturbatively. However, some of the most interesting regions of
this parameter space are inaccessible using conventional Monte Carlo methods. This is due
to sign problems in the sampling methods. It is also computationally expensive to sample
large volumes at fine lattice spacing.

A promising and relatively-new numerical algorithm, called the tensor renormalization
group (TRG), potentially has the ability to study these difficult-to-access regions of param-
eter space, and reach arbitrarily-large volumes [1, 2, 3, 4]. This is because the method does
not rely on sampling using a probability weight, and the computational time scales like the
logarithm of the volume. However, prior to a couple of years ago, the method was useful
primarily in spacetime dimensions < 2, due to its expensive computational cost in higher
dimensions.

Excitingly, in the past couple of years there has been remarkable progress in the efficiency
of TRG methods in higher dimensions [5, 6, 7, 8]. This includes simulations of a model with
a sign problem, in four dimensions, with lattices up to size 1024 [7]. These approaches have
made calculations in 2+1 and 3+1 dimensions completely feasible in terms of computational
time and resources. Although this gain in efficiency came at the price of further truncation
during the coarse-graining procedure, the fact that the TRG is immune to the sign problem,
coupled with the advantage that large volumes are trivial using this approach, demands the
further investigation of these higher-dimensional algorithms. If the loss in accuracy due to
these truncations is negligible, or can be overcome through algorithmic tricks, the payoff
when studying relevant physical models could be large. Moreover, if we apply ourselves to
overcoming these accuracy problems, TRG methods could be useful in only a few years.

To assess the efficacy of these algorithms in higher dimensions, we should try various
(toy and not toy) models, each with their own quirks and subtleties, to better understand
the effects of truncation. This is an excellent opportunity to use the advanced computing
facilities here in the United States in the spirit of the lattice quantum chromodynamics effort.
Since the TRG is a large multi-linear algebra problem, it is quite amenable to parallelization.
Moreover, often many of the symmetries of a model manifest themselves in the form of
sparsity in the local tensors [9]. This sparsity is again conducive to efficient algorithms, and



parallelization. Taking advantage of these opportunities at parallelization and optimization
may already overcome whatever losses the truncations introduce in these higher-dimensional
algorithms, and so, should be considered.

The TRG has the potential to make significant advances in our understanding of 3+1
dimensional quantum field theory. We can make rapid progress in fulfilling this potential
by pushing the effort into developing efficient algorithms for high-performance computing,
and studying a variety of physically relevant models. On top of this, the realization of this
potential will prompt the fruitful collaboration between fields such as condensed matter,
quantum information science, lattice gauge theory, and high energy theory/experiment.
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