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Abstract

This letter of interest for the Theory Frontier of the Snowmass planning exercise focuses on

transcendental functions related to elliptic curves, which appear in precision calculations in

perturbative quantum field theory from two-loop onwards.

Extended outline

The Standard Model involves several heavy particles: the Z- and W -bosons, the Higgs boson

and the top quark. Precision studies of these particles require on the theoretical side quantum

corrections at the two-loop order and beyond. It is a well-known fact that starting from two-loops

Feynman integrals can no longer be expressed exclusively in terms of multiple polylogarithms.

Transcendental functions beyond multiple polylogarithms appear quite early on at two-loops, as

soon as massive particles are involved.

Multiple polylogarithms, either defined by their sum representation
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or their integral representation
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are associated to a Riemann surface of genus zero (the Riemann sphere).

Starting from two-loops we also encounter transcendental functions associated to a Riemann

surface of genus one (an elliptic curve). These are dubbed “elliptic multiple polylogarithms” and

the focus of this contribution. Let me outline the three main points, which will be discussed in

the white paper:
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1. Various definitions of “elliptic multiple polylogarithms” exist in the literature. These def-

initions differ in details. The white paper will compare the various definitions. While

some differences in the definition are just a matter of conventions, let me highlight a more

fundamental difference: Some authors prefer a definition, where the functions are double-

periodic at the expense of not being meromorphic. Other authors prefer a definition, where

the functions are meromorphic, at the expense of not being double-periodic. It is not pos-

sible to have both. For the application towards Feynman integrals, the latter definition is

appropriate. Thus we are not dealing with a single-valued function on an elliptic curve, but

either a multi-valued function on an elliptic curve or a single-valued function on a covering

space of an elliptic curve.

2. The standard method for computing Feynman integrals is the method of differential equa-

tions. We would like that the result for a Feynman integral follows easily from the differ-

ential equation, once the differential equation is brought into a canonical form. Thus we

adopt a definition of elliptic multiple polylogarithms in terms of iterated integrals. The rel-

evant space for these iterated integrals is the moduli space of a Riemann surface of genus

one with n marked points. Standard coordinates on this space are (n− 1)-marked points

(one point may be fixed by translation invariance at the origin) and the modular parameter

τ. Thus we may either integrate the differential equation in a z-variable or in τ, giving two

alternatives how to express the Feynman integral. The white paper will contrast these two

possibilities.

3. At the end of the day we would like to evaluate the resulting transcendental functions

numerically. The standard method for the numerical evaluation is a converging sum repre-

sentation, which can be truncated after a sufficient precision has been reached. The numer-

ical evaluation of transcendental functions related to elliptic curves is very often based on

q-expansions (with q = exp(2πiτ)) and the white paper will discuss numerical evaluations.
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