
Precision Resummation: Present and Future

Thomas Bechera , Alessandro Broggiob , Andrea Ferrogliac and Ding Yu Shaod,e,f

aAlbert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität Bern, Si-

dlerstrasse 5, CH-3012 Bern, Switzerland
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Abstract: The purpose of this planned review of precision resummation in high-energy physics

is to provide an overview of recent advancements and promising directions in the field, with a

particular attention to the phenomenological needs dictated by experiments at present and future

accelerators. We plan to survey the field by analyzing various areas of interest (transverse momen-

tum resummation, threshold resummation, event shapes, electroweak Sudakov, subleading power

corrections, etc.) and by highlighting in which present and future experiments resummed results

are relevant and which improvements are needed and expected.
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1 Introduction

Extremely precise predictions for observables measured at particle accelerators are crucial in order

to test the Standard Model (SM) of particle physics as well as to constrain the parameter space of

proposed Beyond the SM scenarios. Precision physics is particularly important today since the long

sought supersymmetric partners of SM particles – or any other clear sign of new physics – were not

detected at the Large Hadron Collider (LHC).

Precise predictions for (differential) cross sections are obtained in fixed-order perturbation the-

ory as expansions in power series in the SM coupling constants, in particular the strong coupling

constant αs, since the majority of processes studied at the LHC are mediated by the strong inter-

action. However, most phenomenologically relevant scattering processes involve a variety of mass

scales, because of the kinematic constraints imposed on the phase space or because they involve

massive particles. It is well known that in multi-scale processes the convergence of the perturbative

series is spoiled by the presence of large logarithmic corrections that depend on the ratios of the

scales involved in the process. Indeed, at each order in the expansion in powers of the coupling con-

stant, higher powers of these logarithms can result in terms which are not negligible in comparison

to terms of lower power in the coupling constant.

Resummation techniques make it possible to account for large logarithmic corrections to all

orders in the coupling constant. This is achieved, roughly speaking, by exponentiating these correc-

tions. This procedure can be justified and implemented in several ways, such as by examining the

structure of the Feynman diagram involved in a given process, or by studying the process within an

effective field theory approach. In particular, Soft-Collinear Effective Theory (SCET) is important

in the context of collider physics. It allows for the systematic study of multi-scale processes and

for the resummation of large corrections by means of renormalization group improved perturbation

theory.

The purpose of the proposed review is to survey recent advancements in resummation studies,

with a particular attention to the aspects of resummation that are expected to be phenomenologi-

cally relevant in the immediate and medium-term future. We plan to consider resummation based

on both the SCET and the direct QCD approaches.

2 Covered Topics

We plan to organize the review in sections investigating the following areas of interest in the study

of resummation

1) Transverse momentum resummation Transverse momentum spectra are an important

hadron-collider precision observable. The per-mille level measurements for Z production, and

percent level observations for many diboson processes from the LHC are a huge challenge for

theory. We will review and compare existing resummation codes [1–19] and their underlying

formalisms. The most accurate codes provide resummation up to N3LL for single as well as

diboson processes and also allow for the inclusion of fiducial cuts on the electroweak final-

state particles. We will discuss challenges associated with power corrections [19, 20], non-

perturbative effects and discuss the prospects to go beyond the few per-cent level predictions

avaliable today.

2) Threshold resummation Fixed-order calculations beyond NLO are technically difficult.

The resummation of soft gluon emission corrections allows for the evaluation of potentially

large corrections to all orders. In LHC physics, soft-gluon resummation was initially carried

out for processes with relatively simple final states, such as Higgs boson production and

top-pair production. More recently, this approach was extended to the study of differential

– 2 –



distributions and finals states involving a larger number of massive particles. We plan to

review soft-gluon resummation applied to the associated production of a top-antitop quark

pair and a W/Z or Higgs boson, that was carried out up to NNLL accuracy, both by means

of SCET techniques [21–24], and within the direct QCD approach [25–27]. The resummed

calculations were combined to NLO QCD and EW corrections [28, 29] to obtain predictions

that are now compared to early measurements of differential distributions [30].

3) Event shapes Event shape variables have a long history as precision observables at lepton

colliders and some of them have been resummed to very high accuracy. However, there are

interesting open questions, for example that the value of αs extracted from thrust [31] is

significantly lower than the value from other determinations [32]. At hadron colliders, these

observables can provide new opportunities for improving our understanding of QCD, especially

the study of factorizaton violation effects. Recently, NNLL resummation has been achieved

for zero-jet [33–35], one-jet [36] and two-jet [37] production processes. Moreover, the three-

loop order n-jettiness beam function was calculated in [38], which is an important ingredient

in N4LL resummation.

4) Electroweak Sudakov At high energy colliders, such as LHC and especially future 100 TeV

hadron collider, the effect of electroweak corrections on the cross section can be significant.

Therefore it is important to include electroweak Sudakov logarithms in the precision calcula-

tions. Electroweak contributions to PDF evolution have been computed recently in [39–42].

In addition, electroweak Sudakov resummation has been also extensively studied in the con-

text of dark matter annihilation processes [43–50] due to its large impact on the annihilation

cross sections.

5) Jet observables, jet substracture methods, non-global logarithms Jets not only dis-

play the behavior of QCD over a wide range of energy scales, but can also contain important

signatures of exotic physics. In particular, recently jet substructure observables are playing a

central role in a large number of analyses at the LHC. With this motivation, it is imperative

to understand jet observables from first-principle QCD calculations. Some basic QCD resum-

mation methods and a review of some recent developments for jet observables can be found

in [51, 52]. In particular, a new effective theory for jet processes has been proposed within

SCET framework [53, 54], where a multi-Wilson-line structure is introduced to capture the

non-linear QCD evolution effects from the so-called non-global logarithms. Besides, in [55, 56]

the Lund-jet plane has been proposed as a powerful tool to study jet substructures, where

different types of single logarithms are systematically resummed.

6) Subleading power corrections With experiments requiring ever more precise predictions,

it became necessary to study the structure of subleading power corrections both in QCD

and SCET. The structure of subleding power corrections has been investigated to fixed order

accuracy in the context of the method of regions and in SCET for different observables [57–

67]. In addition, systematic derivations of factorization and resummation formulas at LL, up

to next-to-leading power accuracy, were recently carried out [68–79]. In the review we will

investigate the directions in which the study of subleading power corrections can evolve, as

well as the theoretical challenges that it is currently facing.

From the point of view of phenomenology, we plan to focus on applications of resummation tech-

niques that are relevant for the high-luminosity LHC, the proposed Electron Ion Collider (EIC),

and a future e+e− collider that could operate as a Z or a Higgs factory. The review will deal with

results published in the last five years, so that it complements and updates [80] and the review that

can be found in the final chapter of [81].
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