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I. INTRODUCTION

Parton shower event generators have proven to be very
important since their introduction in the 1980s [1, 2].
Discussion of these tools and of prospects for their im-
provement is included in the program of the Energy Fron-
tier. We suggest that a complementary discussion should
be part of the Precision branch of the Theory Frontier.

The focus within the Theory Frontier would be on the
algorithms used to generate a simulated parton shower.
These algorithms are based on a detailed understanding
of the structure of the QCD. In recent years there has
been substantial work to translate our knowledge of this
structure into practical computer algorithms. This work
is closely related to developments in extending perturba-
tive calculations of important hard processes to higher
perturbative order. The work is also closely related to
work to rearrange QCD perturbation theory for processes
that contain large logarithms in their perturbative ex-
pansion. One wants to sum the large logarithms so as
to improve the precision of predictions. The idea of in-
cluding this discussion within the Theory Frontier is to
emphasize that there is a lot of theoretical work that goes
into developing these essential tools.

II. ITEMS FOR DISCUSSION

We list below some of the topics that could be part of
the Theory Frontier discussion.

1. Matching. A parton shower is initiated by a hard
scattering process, say gg → Higgs. If the hard
scattering is calculated at lowest order, then the
result is conceptually simple: the parton shower
provides an approximated version of higher order
corrections. However, if we want to use a hard pro-
cess calculated at, say, NLO, then we need to sub-
tract the approximated NLO corrections generated
by the shower. There has been a large amount of
work on this in recent years and work is ongoing
[3–22].
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2. Merging. We may want to consider together two
different processes, each calculated at beyond low-
est order (for instance gg → Higgs and gg →
Higgs + jet). Then each hard process can initiate a
parton shower. Evidently, there is a certain amount
of ambiguity in exactly how these processes should
be combined. Again, there has been a large amount
of work on this in recent years and work is ongoing
[23–25].

3. NLO shower. Current parton shower algorithms
are based on parton splitting probabilities calcu-
lated at lowest order, order α1

s . One might hope
to have a parton shower based on parton splitting
probabilities calculated at order α2

s . There has
been some recent progress in this direction [26–
30]. We have provided a general framework that
we think could guide the construction of an NLO
shower [31]. Although we believe that a complete
algorithm lies some years in the future, we believe
that the effort is important.

4. Quantum interference. Parton shower algorithms
need to respect quantum mechanics. That is, one
should consider the evolution of the quantum am-
plitude. One of the earliest shower algorithms, the
one in Herwig, was invented to do just this in an
approximate way. Most modern parton showers are
of the “dipole” sort, so that one includes (with ap-
proximations) emissions from both members of the
dipole, including the interference between emission
from one member of a dipole and emission from the
other. In this way, it is the quantum amplitudes
that evolve.

5. Color. Partons carry quantum SU(3) color. This
means that there is a bra amplitude describing
many partons with their color and a ket amplitude
for many partons with their color. Gluon emis-
sions change the color state, as do virtual gluon
exchanges. This is not so easy to describe in a com-
puter because the color space for, say, twenty par-
tons has approximately 1036 dimensions. Further-
more, an approximate version of virtual diagrams
is included in a parton shower as an exponential,
the Sudakov exponential. One can, of course, ex-
ponentiate a matrix on a computer, but not in 1036
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dimensions.

Most programs use what is called the leading color
(LC) approximation, which gives the leading term
in an expansion in powers of 1/N2

c (with Nc = 3).
There is an improved version called the LC+ ap-
proximation [32], but this is still a rather crude
approximation. Work to do better is currently on-
going. One method expands perturbatively in the
difference between the full color splitting functions
and their LC+ approximation [33]. A very recent,
independent, algorithm [34] is more limited in its
current capabilities but is rather similar in its ap-
proach.

6. Spin. Partons carry quantum spin. The spin of glu-
ons affects the dependence of their splitting func-
tions on the azimuthal angle of their decays. Thus
one should keep track of quantum spin in the par-
ton amplitudes. The alternative is to average over
spins at each step, thus losing information that
affects azimuthal angle distributions. For certain
technical reasons, the implementation of quantum
spin in a parton shower algorithm is much easier
than the implementation of color. However, the
needed implementation has, for the most part, not
been realized. The notable exception is Herwig7
[35]. We can anticipate that more development in
this direction will take place in the future.

7. Summation of large logarithms. Many cross sec-
tions that play a role in particle physics depend
on two very different momentum scales. In conse-
quence, the coefficient of αn

s in the perturbative ex-
pansion of such a cross section will contain powers
of the logarithm of L of the ratio of these scales.
Typically, we find contributions proportional to
αn
s L

2n−1 or αn
s L

2n. An example is the cross section
to produce a virtual photon with squared momen-
tum Q2 and with transverse momentum kT, with
L = log(Q2/k2T). The large logarithms L spoil
the usefulness of fixed order perturbation theory
in calculating the cross section. There has been
a very substantial theoretical effort over the years
to sum the perturbative contributions that contain
the most powers of L. For instance, soft-collinear-
effective theory (SCET) has often been used for this

purpose in recent years.

This sort of analytical large logarithm summation
is adapted to a particular observable cross section.
On the other hand, a parton shower event generator
samples many simulated events and allows the user
to measure any cross section involving the resulting
partons (or hadrons if one applies a hadronization
model). Thus a parton shower is much more flexi-
ble than a dedicated calculation of the same cross
section. Furthermore, a parton shower uses par-
ton splitting functions that contain the soft and
collinear singularities of QCD, so it has the poten-
tial to sum the large logarithms correctly.
Does it? In some cases, it does [36, 37]. However,
the answer depends on what the details of the par-
ton shower are and what logarithms one would like
to sum. Clearly, it is important to understand this
connection better. There has been interesting re-
cent work on this subject [38] and we can anticipate
more results in the near future.

8. Threshold logarithms. There is one class of large
logarithms that is typically not included in parton
shower algorithms. These are the “threshold loga-
rithms” that occur in hard scattering cross sections
at hadron colliders [39]. These logarithms can be
thought of as arising from a mismatch between the
kinematic limits in the DGLAP evolution equation
for parton distribution functions and the kinematic
limits of splittings in a parton shower or in the con-
tributions to the theoretical cross section beyond
leading order. The effects of threshold logarithms
are often important, so there has been an extensive
effort over the years to analyze them analytically.

The effect of threshold logarithms can be incorpo-
rated in a parton shower algorithm [40, 41]. Typ-
ically, this effect is left out of parton shower event
generators, although the first perturbative term in
the threshold log summation is included if the par-
ton shower is matched to an NLO perturbative cal-
culation of the hard scattering cross section. One
can anticipate that a threshold factor will be in-
cluded in more parton shower event generators so
as to improve their accuracy in the future.
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[21] S. Höche, Y. Li and S. Prestel, Higgs-boson production
through gluon fusion at NNLO QCD with parton showers,
Phys. Rev. D 90, 054011 (2014) [inSPIRE].
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