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Precise pQCD predictions for physical observable play
a crucial role in testing the Standard Model (SM) and
the identification of new physics beyond the SM.

It has been conventional to guess the renormalization
scale µr to represent the characteristic momentum flow Q
of a process, or to minimize large logarithmic corrections.
The uncertainties for predictions based on a guessed scale
are usually estimated by varying it over an arbitrary
range; e.g., µr ∈ [Q/2, 2Q]. The principle of renormal-
ization group invariance (RGI) is the principle that a
physical observable must be independent of the choices
of both the renormalization scale and scheme. However,
guessing the choice of µr violates the RGI and introduces
arbitrary scheme-and-scale dependences in pQCD predic-
tions.

Guessing the scale is also inconsistent with the
well-known Gell-Mann-Low (GM-L) procedure used in
QED [1]. The GM-L procedure determines the correct
renormalization scale by setting the scale to the virtuality
of the exchanged photons; the vacuum polarization dia-
grams (the QED {βi}-terms) are eliminated, since they
are summed into the QED running coupling. There is
thus no ambiguity in setting the renormalization scale in
QED.

Conventional scale-setting also has the negative con-
sequence that the resulting pQCD series suffers from a
divergent renormalon (αn

s β
n
0 n!) series [2] characteristic of

a nonconformal series at order n, where αs is the run-
ning QCD coupling. Furthermore, the theoretical er-
ror estimated by simply varying µr over an arbitrary
range is clearly unreliable, since it only partly reflects
the unknown perturbative contributions from the non-
conformal terms.

The Principle of Maximum Conformality (PMC) [3–
7] provides a systematic way to eliminate the renormal-
ization scheme-and-scale ambiguities. It has a rigorous
theoretical foundation, satisfying RGI [8, 9] and all of
the self-consistency conditions derived from the renor-
malization group [10]. The PMC scales at each order are
obtained by shifting the argument of αs to eliminate all
the non-conformal {βi}-terms; the resulting perturbative
series thus matches the conformal series with β = 0; the
PMC scales thus reflect the virtuality of the propagating
gluons for the QCD processes. The divergent renormalon
contributions are eliminated since they are summed in
αs. The PMC reduces in the NC → 0 Abelian limit [11]

to the GM-L method. The resulting PMC scales also
determine the correct effective numbers of active flavors
nf at each order. Moreover, the pQCD convergence is
automatically improved due to the elimination of the di-
vergent renormalon series.

A crucial point is that the resulting scale-fixed predic-
tions for physical observables using the PMC are inde-
pendent of the choice of renormalization scheme such as
MS – a key requirement of RGI. The PMC predictions
are also independent of the choice of the initial renormal-
ization scale µr.

The PMC is also the theoretical principle underlying
the Brodsky-Lepage-Mackenzie (BLM) procedure [12],
commensurate scale relations connecting observables, as
well as the scale-setting method used in lattice gauge the-
ory. One can also use an additional property of renor-
malizable SU(N)/U(1) gauge theories, “Intrinsic Confor-
mality (iCF)”, which underlies the scale invariance of
physical observables. This method, PMC∞ [13] leads to
a remarkably efficient method for eliminating the renor-
malization scale ambiguity at every order in pQCD.

The scale dependence of αs is controlled by the renor-
malization group equation, which can be used recursively
to establish the perturbative pattern of {βi}-terms at
each order [14]. The pQCD prediction (%) for a phys-
ical observable can be expressed as [6, 7]

%(Q) = r0,0 + r1,0α(µr) + [r2,0 + β0r2,1]α2(µr) +[
r3,0 + β1r2,1 + 2β0r3,1 + β2

0r3,2
]
α3(µr) + · · · ,(1)

where α = αs/4π, and Q is the scale at which the ob-
servable is measured. All the coefficients ri,j are, in prin-
ciple, functions of the initial choice of scale µr and Q, in
which the coefficients ri,0 are conformal parts of the co-
efficients. After applying the standard PMC procedure,
the final pQCD prediction for % reads

%(Q) = r0,0 +

n∑
i=1

ri,0α
i(Qi), (2)

where Qi are PMC scales, which are generally free of
µr-dependence and can be interpreted as the relevant
“physical” scales of the perturbative graphs at each of
order i contributing to the physical observable. PMC
predictions can be made for observables with multiple
scales. The residual scale dependence due to unknown



2

higher-order perturbative terms is highly suppressed [9].
The coefficients of the resulting series Eq. (2) match the
coefficients of the corresponding conformal theory with
β = 0. As in QED, all {βi}-terms are absorbed into the
scale of αs.

The PMC approach has now been successfully applied
to many different high energy processes, including Higgs
boson production at the LHC [15], Higgs boson decays to
γγ [16, 17], gg and bb̄ [18–20] processes, top-quark pair
production at the LHC and Tevatron [4, 21–25], semihard
processes based on the BFKL approach [26–29], electron-
positron annihilation to hadrons [6–8], the hadronic Z0

boson decays [30, 31], event shapes in electron-positron
annihilation [13, 32, 33], Υ(1S) leptonic decay [34, 35],
charmonium production [36–38], and various decay pro-
cesses [39, 40]. In addition, the PMC provides a possible
solution to the B → ππ puzzle [41] and the γγ∗ → ηc
puzzle [42].
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FIG. 1: The C-parameter differential distributions using con-
ventional (Conv.) and PMC scale settings at

√
s = MZ .

The dot-dashed, dashed and dotted lines are the conventional
scale-fixed results at LO, NLO and NNLO [43, 44], respec-
tively. The solid line is the PMC result. The data are taken
from the ALEPH [45] experiment.

As an explicit example of the PMC, it is found that by
using the PMC, one has an elegant way to determine the
running of αs from the event shape distributions mea-
sured via the electron-positron annihilation [33]. In the
case of conventional scale-setting, one simply sets the
renormalization scale to be the center-of-mass collision
energy µr =

√
s, and the event shape distributions do not

match the precise experimental data. Worse, only one
value of αs at the scale

√
s can be extracted, whose main

error source is the choice of the renormalization scale µr.
On the other hand, the PMC scale can be determined
with the help of the known {βi} terms, which mono-
tonically increases with the value of event shapes, well
reflecting the increasing virtuality of the QCD dynam-
ics. More explicitly, we present the typical C-parameter
using the conventional and PMC scale-settings in Fig. 1.
Figure 1 shows that the conventional predictions – even
up to NNLO pQCD corrections – substantially deviate
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FIG. 2: The coupling constant αs(Q2) extracted by compar-
ing PMC predictions with the ALEPH data [45] at a single
energy of

√
s = MZ from the C-parameter distributions in the

MS scheme. The error bars are the squared averages of the
experimental and theoretical errors. The three lines are the
world average evaluated from αs(M2

Z) = 0.1181± 0.0011 [46].

from the precise experimental data; the estimate of un-
known higher-order terms by varying µr ∈ [

√
s/2, 2

√
s] is

unreliable, In addition, the perturbative series for the C-
parameter distribution shows slow convergence because
of the renormalon problem. In contrast the PMC pre-
diction for the C-parameter distribution is in excellent
agreement with the experimental data.

Since the PMC scale in αs(Q
2) varies with the value

of the event shape C, we can extract αs(Q
2) over a

wide range of Q2 using the experimental data at a sin-
gle energy of

√
s, as shown in Fig 2. The results for

αs(Q
2) in the range 3 GeV < Q < 11 GeV are in ex-

cellent agreement with the world average evaluated from
αs(M

2
Z) [46]. Thus, as required, the PMC approach elim-

inates the renormalization scale uncertainty, and the ex-
tracted αs(Q

2) is not plagued by any uncertainty from
the choice of the renormalization scale µr. One can also
use the PMC to improve αs near the nonperturbative
domain. Knowing αs at low momentum is often critical
even for perturbative studies, since some of the physical
scales Qi may be soft. In fact, following the GM-L pre-
scription for couplings makes αs an observable; i.e., an
effective charge. Thus, the PMC procedure is applicable
to αs itself. The resulting PMC series for αs [47] does not
exhibit the severe renormalon growth conspicuous in the
standard αs pQCD series [14]. This leads to significantly
smaller uncertainties in the behavior of αs, especially at
lower Q values.

The applications of the PMC illustrate the importance
of correct, rigorous renormalization scale-setting. In vir-
tually every application, it is found that the application
of the PMC systematically eliminates a major theoret-
ical uncertainty for pQCD predictions; the application
of the PMC thus greatly increases collider sensitivity to
possible new physics beyond the Standard Model.
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