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Theory predictions at high perturbative orders enable precision phenomenology
at high energy experiments. In this letter, we propose to survey recent analytic and
computational advances for the calculation of multi-loop scattering amplitudes.

A standard workflow for fixed-order calculations involves symbolic manipulations to obtain
scattering amplitudes in terms of master integrals, an analytic calculation of the master
integrals in terms of standard mathematical functions, and a numerical integration over
phase space using a scheme to handle infrared divergences. A major driver behind precision
phenomenology is the ability to numerically evaluate multi-loop scattering amplitudes for the
physical kinematics of interest.

For one-loop amplitudes, a high level of automation has been achieved using numerical
methods to overcome limitations due to the increase in algebraic complexity with increasing
numbers of legs and mass scales. More recently, significant progress has been made also at the
multi-loop level through a better understanding of the underlying mathematical structure as
well as through computational advances. Methods from polynomial ideal theory [1] allow for
better control over the reduction of tensor integrals compared to classic integration-by-part
identities. Furthermore, the usage finite field arithmetic [2–4] allows to bypass intermediate
expression swell in what has traditionally been purely symbolic manipulations to construct
the reduced amplitude. Another advance has been the extension of numerical unitarity
techniques to multi-loop amplitude calculations [5–7].

At the multi-loop level, new processes typically require the calculation of unknown master
integrals. Analytic calculations have the potential for very precise and fast numerical
evaluations, but require a detailed understanding and algorithmic control over the special
mathematical functions involved, such as multiple polylogarithms of algebraic arguments [8] or
elliptic polylogarithms [9]. Meanwhile, purely numerical techniques can often provide answers
with sufficient speed and precision for phenomenology when the analytical understanding still
lags behind [4, 10, 11]. In all cases, a proper choice of basis can lead to great simplifications,
e.g. a canonical basis [12] for the method of differential equations or a basis of finite integrals
[13] for direct parametric integration. Expansion techniques offer precise numerical evaluations
when differential equations are accessible but their exact analytic integration is challenging
[14].

As a contribution to the Snowmass effort, we wish to survey different advances in perturbative
methods for precision phenomenology. A special emphasis is on the computational demands
for precise theory predictions for current and future measurements at colliders. In particular,
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we propose to characterize the methods and complexity of existing calculations to assess
future computational demands, which are required to deliver results for the physics program
of the LHC, EIC, HL-LHC and other future colliders.
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