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Abstract: Novelty (anomaly) detection is a task of machine learning to detect novel events without a
prior knowledge. The deep-neural-network-based techniques for novelty detection recently received high
attention and have been proposed for searching for unexpected signals of new physics at colliders. As a foot
stone of many such techniques, the evaluators of data novelty can be roughly classified into two classes,
namely isolation-based and clustering-based, depending on whether the evaluation of each testing event
correlates with those for the others. In this study, we demonstrate that a complementarity generically exists
between these two classes of evaluators. We are now developing a new class of novelty evaluators which
allow us to synergize the pros of these two classes of evaluators. For illustration, we plan to apply this new
design to analyzing the ttγγ data at LHC, with the tth→ ttγγ Higgs production and the gravity-mediated
supersymmetry with a final state of ttγγ serving as novel events in this context.

1



After the triumph of the Higgs discovery1;2, null findings in NP have motivated the design of new
analysis strategies which allow the unexpected NP to be detected in a more model-independent way and
with a broader coverage in theory space, and hence complement the current ones extensively used at LHC.

In the science of ML, this involves a well-known task - novelty (or anomaly) detection (for a review,
see, e.g.,3): detect novel events without a prior knowledge. This implies that there is no data of the signal
pattern available for model training. Various algorithms have been applied for the NP search4–10 in the
recent years,. Many of these novelty evaluators can be approximately classified into two classes4, according
to the emphasis of evaluation.

• Isolation-based. The novelty response of a given testing point is evaluated according to its distance to
or isolation from the distribution of known-pattern data in the feature space. All of the other testing
points are irrelevant in this process.

• Clustering-based. The novelty response of a given testing point is evaluated according to the clustering
around this point on top of the distribution of known-pattern data in the feature space. Some other
testing points potentially in the same cluster of unknown-pattern data are relevant in this process.

Here the distribution of the known-pattern data in both cases can be figured out by taking either Monte-Carlo
simulation (semi-supervised ML) or data extrapolation (fully unsupervised ML).

In our previous work4, Oiso and Oclu, representing each of both classes, are defined with the method of
k-nearest neighbors. In short, Oiso meaures the difference between the mean distance of a testing data to its
k nearest neighbors(kNN) and the average of the mean distances defined for its k nearest neighbors(kNN’s
kNN), while Oclu will evaluate novelty response of the testing point by comparing its local densities in the
training and testing datasets. Furthermore, The constructions for the isolation-based and clustering-based
evaluators are not unique. For instance, the reconstruction error of autoencoder5;6;8 in essence is isolation-
based, while the likelihood ratio used in7;9;10 shares similar spirit to that of Oclu.

Figure 1: Novelty response of data toOiso,Oclu andOsyn - cartoon demonstration. Here red and blue points
are of the known and unknown patterns, respectively.11
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Yet, to improve their effectiveness and efficiency in a general sense, it is important to synergize these
two classes of novelty evaluators. The reason is demonstrated in Fig. 1, with 2D Gaussian samples. Here the
red and blue points represent the known-pattern and unknown-pattern data, respectively, with their novelty
response being evaluated by the isolation-based and clustering-based evaluators. In this figure, the signal bin
of both (as is shown in the bottom panels) receives contributions of red points from not only the true signal
region (blue area in the top panels), but also some non-signal region, at the 2D plane. For the isolation-
based evaluators, e.g., Oiso, the relevant non-signal region is the ring area between the two yellow circles
(excluded the original signal (blue) region) in the top panels. For the clustering-based ones, the relevant
non-signal region is characterized by upward fluctuations. If these two classes of the evaluators are well-
synergized, one would expect that only the intersection between the two non-signal regions may contribute
to the signal bin significantly, resulting in an improved S/B. To this purpose, we design the third class of
novelty evaluators:

• Synergy-based. The novelty response of a given testing point is evaluated according to the syner-
gization of its novelty responses or the novelty responses of the datasets to both isolation-based and
clustering-based novelty evaluators.

In 4, the synergy-based evaluator is naively defined as:

Osyn =
√
OisoOclu, (1)

i.e., the geometric mean of Oiso and Oclu.

However, Osyn has its own disadvantages. There is no reason to regard the geometric mean as the
optimal solution to synergizing the 2 classes of evaluators. Besides,Oclu breaks the statistical independence
of the testing points and further the Gaussian/Poisson properties of the dataset, since it evaluates novelty
response of a given testing point based on its correlation with some other testing points in the dataset. While
calculating the significance based on the novelty response to Oclu and hence Osyn, one needs to extract out
the one-sigma definition in significance, using, e.g., a p-value method.

Thus we are motivated to invent a more generic synergy-based novelty evaluator O′
syn. A binary su-

pervised neutral network is design to synergize Oiso and Oclu automatically where its output is defined as
O′

syn. Though its definition is based on the novelty responses of testing data toOiso andOclu, as a non-linear
function, O′

syn evaluates the novelty response of each testing point independently. Therefore, it preserves
the Gaussian/Poisson statistics of the testing dataset successfully. More than that, different from manually
selecting the geometric mean as the novelty measure, we expect such a design of synergy-based evaluator
would open a broad avenue for us to optimize the performance of novelty detection at colliders.

We initiate with two-dimensional Gaussian samples, as a proof of concept, to mimic signals of differ-
ent kinematic patterns. O′

syn, as a new design, will be studied as the integration of the isolated-based and
clustering-based evaluator. We expect to see a complementarity between and then will generalize the al-
gorithm to physical cases. As a concrete application, we propose to analyze the ttγγ data at LHC. The
tth→ ttγγ Higgs production and the gravity-mediated supersymmetry with a final state of ttγγ will serve
as novel events, which represent the signal patterns with a sharp resonance and a broad distribution of mγγ ,
respectively.
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